Bias stress effect in organic thin film transistors operating in irradiation-activated electrolyte

I. Marinakis*, E. Kapetanakis

Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece.

V. Saltas

Institute of Physics of the Earth's Interior & Geohazards, Hellenic Mediterranean University Research Center, 73133 Chania, Greece.

C. Katsogridakis, P. Argitis, P. Normand

Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", PO Box 60228, 15310 Athens, Greece.

In the present work, we report on solution-processed electrolyte-gated organic thin film transistors (EGOTFTs) stemming from in-situ photo-induced-generation of mobile ions in polymeric gate dielectrics. The latter are made of PMMA containing a photoacid generator (PAG) for producing upon UV irradiation an electrolyte with potentially mobile ions [1]. Particular emphasis is placed on the modulation of the source (S)-drain (D) output current (I_{DS}) of top-gate (PEDOT:PSS) bottomcontact (Au or ITO as S/D electrodes) p-type (P3HT)-based transistors operating in the linear regime under the application of fixed gate bias (V_{GS}) . I_{DS} is recorded at the drain electrode by applying a square pulsed S/D voltage (-1V/0.2 s) at limited time intervals. Figure 1 shows the I_D -t characteristics in logarithmic representation of UV-irradiated devices with Au S/D electrodes, using a 350nm-thick PAG-PMMA layer formed onto a 20 nm-thick P3HT layer under fixed V_{GS} =-25V. Similar I_{DS} as time tends to infinity are recorded for devices with a channel length (CL) in the 0.5 - 10 µm range. As compared to the Au S/D electrode devices, UV-irradiated devices with interdigitated ITO electrodes (with variable 50-200 µm CL and channel width, W=30 mm), using a 350nm-thick PAG-PMMA layer formed onto a 20 or 50 nm-thick P3HT layer exhibit the same trend in the maximum recorded I_{DS} (V_{GS} =-25V) as depicted in the inset of Figure 2 for V_{DS} = ± 1V. This clearly reveals that at long stress times, I_{DS} depends very little on the channel length and is dominated by S/D contact resistances. Figure 2 shows that I_{DS} as time tends to infinity decreases as the thickness of the P3HT increases, thus indicating an enhancement of the contact resistance with the P3HT thickness. Additional features of I_{DS} modulation with time as a function of the applied V_{GS} , V_{DS} , P3HT thickness, CL, and UV-exposure time will be presented at the conference.

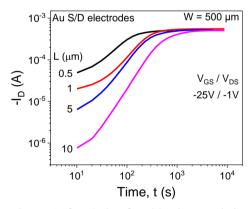


Figure 1: $\log{(I_{\rm D})} - \log{(t)}$ characteristics of UV-irradiated devices with Au S/D electrode for different channel lengths ranging from 0.5 to 10 μ m, using an 80 °C-baked 350nm-thick PAG-PMMA electrolyte layer formed onto a 20 nm-thick P3HT layer under fixed V_{GS}=-25V.

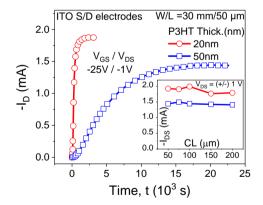


Figure 2: $I_{\rm D}-t$ characteristics with interdigitated ITO electrodes, using a 20 or 50 nm-thick P3HT layer. Inset: I_{DS} vs CL characteristics of devices with L ranging from 50 to 200 μ m (W = 30 mm) after stressing at $V_{\rm GS}$ =-25V for $V_{\rm DS}$ = \pm 1V.

References

[1] E. Kapetanakis, Ch. Katsogridakis, D. Dimotikali, P. Argitis, and P. Normand, Adv. Electron. Mater. 6, 2000238 (2020).

^{*} ioanmarinakis@gmail.com