Ferromagnetic Resonance in Ru/Co/MoPt multilayers

P. Ntetsika1*, R. Gupta2, R. Brucas2, P. Svedlindh2, G. Mitrikas3, I. Panagiotopoulos4

1 Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
2 Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
3 Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, Athens, Greece

Introduction
Synthetic antiferromagnets (SAFs) are based on the oscillatory RKKY interlayer exchange coupling of thin magnetic layers through metal, via the conduction electrons [1]. The low field tunability of the magnetic state in SAFs opened the route to spintronic devices [2]. It is the same tunability that makes them attractive for other applications such as tunable magnonics [3] and terahertz nano-oscillators [4]. In Ru/Co multilayers with in plane anisotropy we have observed hybridized modes of mixed optic-acoustic character. Here we extend the study to a perpendicular anisotropy system Ru/Co/MoPt.

Experimental Methods – Results
The multilayered [Ru$_6$/Co$_x$/MoPt$_4$]$_{12}$ (with $x=12$-16 Å) films have been deposited on rotating substrates, at room temperature by magnetron sputtering. The hysteresis loops show a weak perpendicular anisotropy with a smeared spin-flop transition about 5kOe. Angle dependent cavity FMR results support the conclusion that the samples exhibit a canted AF state up to 14kOe.

Acknowledgements
P. Ntetsika acknowledges funding by the Hellenic Foundation for Research and Innovation (HFRI) under the 3rd Call for HFRI PhD Fellowships (Fellowship Number: 5383).

References

* p.ntetsika@uoi.gr