High Performance Single-ion Polymer Electrolytes via Macromolecular Engineering

E. Glynos^{1,2*}, G. Nikolakakou,^{2,3} D. Kritsiotakis^{1,2}, C. Pantazidis,⁴ G. Sakellariou⁴

¹ Departement of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete, Greece ²Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1385, 71110 Heraklion, Crete GR, Greece

³Departement of Chemistry, University of Crete, Heraklion, 700 13 Heraklion, Crete, Greece ⁴Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece ^{*}eglynos@iesl.forth.gr, eglynos@materials.uoc.gr

Single-ion solid polymer electrolytes (SI-SPEs) represent the ultimate solution to the safety issues associated with the use of flammable and toxic liquid electrolytes in commercial Li-ion batteries and for the realization of high energy-density Li-metal batteries. In spite of the considerable research effort in SI-SPEs, the realization of their potential has been hindered by the inability to design materials that possess simultaneously, cation transference number close to unity (i.e. single-ion solid polymer electrolytes, $r_{+} = 1$), good mechanical properties, and high ionic conductivity,. In this talk, we introduce the use of novel, stiff/glassy nanostructured polyanion particles, composed of polyanion miktoarm star copolymers of poly(styrene-4-sulfonyltrifluoromethylsulfonyl) imide lithium, PSTFSILi, arms that are complement to longer ion conducting poly(ethylene oxide), PEO, arms, (PSTFSILi)_n(PEO)_n, where n \approx 22, attached to a poly(divinylbenzene), PDVB, crosslinked core as additives to liquid, oligomeric poly(ethylene oxide), PEO, electrolytes for the synthesis of SI-SPEs that are single-ion by design while exhibit an unparalleled combination of high shear modulus and Li-ion conductivity. Key to their performance is the morphology that stems from the ability of the $(PSTFSILi)_n(PEO)_n$ nanoparticles to homogenously disperse within the liquid PEO electrolyte, allowing the development of a highly interconnected network of pure liquid PEO and the profounds effect of mikto arm architecture on the degree of ion dissociations that promotes high ionic conductivity.

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness and innovation, under the call RESEARCH –CREATE –INNOVATE (project code: T1E Δ K-02576, MIS5033805)

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης