Photonic nanojets fabricated by multiphoton polymerization technique

D. Ladika, G. Zyla, G. Maconi, V. Melissinaki, I. Kassamakov, M. Farsari

IESL/FORTH, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
Department of Materials Science and Technology, University of Crete Greece
University of Helsinki, Helsinki, Finland

Microsphere lenses are widely known for being able to focus light beyond the Abbe diffraction limit, a phenomenon known as a photonic nanojet [1],[2]. This work shows how to process novel photonic nanojet generating structures (PNGS) using maskless 3D printing by multiphoton lithography (MPL) and homemade organic-inorganic hybrid material [3]. Since MPL allows the fabrication of true 3D structures on the microscale with sub-100 nm resolution, it is possible to process arbitrary PNGS stacked on top of each other, such as multiple spheres with different diameters or a combination of a Fresnel-lens and a sphere (see Fig. 1). In addition, MPL enables the accurate and repeatable integration of novel PNS into a macroscopic supporting frame for easy manipulation and attachment. Thus, photonic nanojets generated by novel 3D-printed structures will enable fast super-resolution imaging of samples that would otherwise need to be analyzed using time-consuming scanning electron microscopy or atomic force microscopy.

Figure 1: Scanning electron microscope image of the cross-section of photonic nanojet generating structures printed by MPL. The left image illustrates the combination of two spheres with a diameter of 20 μm and 100 μm. The right image shows the combination of a Fresnel-lens and a sphere with a diameter of 20 μm.

References