Development of TiO₂/MOF Nanostructured Composites Towards Photocatalytic Hydrogen Conversion

E. Loukopoulos*,1, M. Charalampakis1,2, K. Papadopoulos1, E. Skliri2, V. Binas2, P. N. Trikalitis1

1Department of Chemistry, University of Crete, Heraklion 70013, Greece
ptrikal@uoc.gr

2Institute of Electronic Structure and Lasers (IESL), FORTH, Heraklion, Greece
binasbill@iesl.forth.gr

The emergence of hydrogen as a potential green and renewable fuel has provided an ideal solution to address the global challenges towards clean forms of energy. Solar-driven, photocatalytic water splitting is one of the most promising and sustainable methods for H₂ production and has received considerable attention due to its simplicity and cost-effective design [1]. In the constant search for potential photocatalytic systems, porous metal-organic frameworks (MOFs) display large promise [2], as their high porosity, stability and hybrid inorganic-organic nature are important assets towards the formation of stable heterostructured composites with improved photocatalytic activity.

In this work, we report the preparation of several TiO₂/MOF nanostructured composites (Figure 1) and the investigation of their photocatalytic hydrogen conversion performance, using MIL-101 (Cr) as the MOF template. The materials have been characterized through an extensive series of techniques including X-Ray diffraction measurements, SEM/EDS studies, as well as gas sorption experiments with accurate porosity measurements, demonstrating the incorporation of TiO₂ within the framework. Photocatalytic experiments for hydrogen production by water splitting were then carried out in the solar light radiation spectrum using a solar simulator. The evolved gas was analysed using a Shimadzu gas chromatographer (GC) to evaluate their photocatalytic activity.

References


Acknowledgements

This research work was supported by the “Water2Hy” program titled “A novel and rational design of surface and interface oriented heterostructures for sustainable solar-driven photocatalytic hydrogen conversion” part of the Bilateral and Multilateral S&T Cooperation Greece-China (Code: T7ΔK1-00369).