Comparative Study of SnS$_x$Se$_{2-x}$ alloys by High Pressure Raman Spectroscopy

N. Sorogas*, K. Papagelis, A. N. Anagnostopoulos, and J. Arvanitidis

*Physics Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

D. Christofilos

School of Chemical Engineering & Laboratory of Physics, Faculty of Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

In this work, the hydrostatic pressure response of the phonon modes of ternary SnS$_x$Se$_{2-x}$ ($x=0.6, 0.8, 1$) alloys has been studied by means of Raman spectroscopy. High pressure (up to 8 GPa) was generated using a gas membrane-type diamond anvil cell. Owing to the two-mode behaviour of the E$_g$ and A$_{1g}$ modes in the ternary dichalcogenide alloys investigated [1], four Raman bands are observed at ambient conditions and the frequency evolution of three of them {E$_g$(SnSe$_2$-like), A$_{1g}$(SnSe$_2$-like) and A$_{1g}$(SnS$_2$-like)} was followed with pressure. Upon pressure application, all Raman peaks monotonically shift to higher frequencies due to the volume reduction and the bond strengthening (Figure 1).

![Raman peaks](image)

Figure 1: Pressure evolution of the frequencies of the clearly resolved Raman peaks in the SnS$_x$Se$_{2-x}$ alloys. Open (closed) circles correspond to pressure increase (decrease).

The pressure coefficient of the A$_{1g}$(SnS$_2$-like) peak frequency increases gradually from 3.60 to 3.93 cm4/GPa$^{-1}$ with increasing S content, x. These values are compatible with those reported in the literature for the binary SnS$_2$ [2]. At the same time, the pressure coefficient of the A$_{1g}$(SnSe$_2$-like) peak frequency decreases from 3.08 to 2.72 cm4/GPa$^{-1}$ with x, being always larger than that observed for the binary SnSe$_2$ [2]. Furthermore, contrary to the strong covalent bonding along the a-axis compared to the weak van der Waals interactions along the c-axis, the in-plane E$_g$(SnSe$_2$-like) mode exhibits larger pressure coefficient than those of the A$_{1g}$ modes along the c-axis in all the studied alloys. We also extracted the Grüneisen parameters for the A$_{1g}$(SnSe$_2$-like): 0.35, 0.34, 0.36 and the A$_{1g}$(SnSe$_2$-like) mode: 0.44, 0.41, 0.37 for $x=0.6, 0.8$ and 1, respectively. These values indicate the stronger Sn-S interaction along the c-axis compared to the Sn-Se one in the ternary alloys, in agreement with the existing X-ray diffraction (XRD) data in the literature [3].

References

*nsorogka@physics.auth.gr