Ceramic Inclusions/Epoxy Resin Hybrid Nanodielectrics: Development, Characterization and Multi-Functional Performance

S. Gioti, A. Sanida, G. C. Manika, A. C. Patsidis, G. C. Psarras
Smart Materials & Nanodielectrics Laboratory, Department of Materials Science, University of Patras, Patras 26504, Greece

G. N. Mathioudakis
Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research & Technology-Hellas (FORTH), 26504 Patras, Greece

Th. Speliotis
Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Athens 15310, Greece

In our days the scientific impact and technological demand of nanostructured and stimuli responsive materials is high and globally appreciated. Multifunctionality is the combination of various desirable properties in a material or materials’ system, targeting to develop a single material/system exhibiting all necessary responses under various loading conditions. Mechanical sustainability, suitable thermal response, tunable electric conductivity, variable electric polarization/dielectric permittivity, magnetic properties, thermally induced phase changes could be parts of the overall multi-functional behaviour [1-3].

The challenge of the present study concerns the development of a material/device exhibiting thermo-mechanical endurance, variable polarization/tunable dielectric response, adjustable conductivity, varying magnetic performance, and energy storing/recovering efficiency. For this reason, hybrid nanodielectrics of polymer matrix/ferroelectric particles (BaTiO$_3$)/magnetic nanoparticles (Fe$_3$O$_4$, or ZnFe$_2$O$_4$ or SrFe$_{12}$O$_{19}$) were developed and studied under various loading conditions/external stimuli.

References

Acknowledgments

The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number:2850).